84 research outputs found

    Short lists with short programs in short time - a short proof

    Full text link
    Bauwens, Mahklin, Vereshchagin and Zimand [ECCC TR13-007] and Teutsch [arxiv:1212.6104] have shown that given a string x it is possible to construct in polynomial time a list containing a short description of it. We simplify their technique and present a shorter proof of this result

    Hardness of approximation for quantum problems

    Full text link
    The polynomial hierarchy plays a central role in classical complexity theory. Here, we define a quantum generalization of the polynomial hierarchy, and initiate its study. We show that not only are there natural complete problems for the second level of this quantum hierarchy, but that these problems are in fact hard to approximate. Using these techniques, we also obtain hardness of approximation for the class QCMA. Our approach is based on the use of dispersers, and is inspired by the classical results of Umans regarding hardness of approximation for the second level of the classical polynomial hierarchy [Umans, FOCS 1999]. The problems for which we prove hardness of approximation for include, among others, a quantum version of the Succinct Set Cover problem, and a variant of the local Hamiltonian problem with hybrid classical-quantum ground states.Comment: 21 pages, 1 figure, extended abstract appeared in Proceedings of the 39th International Colloquium on Automata, Languages and Programming (ICALP), pages 387-398, Springer, 201

    The Quantum Communication Complexity of Sampling

    Full text link

    Entanglement vs. gap for one-dimensional spin systems

    Full text link
    We study the relationship between entanglement and spectral gap for local Hamiltonians in one dimension. The area law for a one-dimensional system states that for the ground state, the entanglement of any interval is upper-bounded by a constant independent of the size of the interval. However, the possible dependence of the upper bound on the spectral gap Delta is not known, as the best known general upper bound is asymptotically much larger than the largest possible entropy of any model system previously constructed for small Delta. To help resolve this asymptotic behavior, we construct a family of one-dimensional local systems for which some intervals have entanglement entropy which is polynomial in 1/Delta, whereas previously studied systems, such as free fermion systems or systems described by conformal field theory, had the entropy of all intervals bounded by a constant times log(1/Delta).Comment: 16 pages. v2 is final published version with slight clarification

    Noise-Resilient Group Testing: Limitations and Constructions

    Full text link
    We study combinatorial group testing schemes for learning dd-sparse Boolean vectors using highly unreliable disjunctive measurements. We consider an adversarial noise model that only limits the number of false observations, and show that any noise-resilient scheme in this model can only approximately reconstruct the sparse vector. On the positive side, we take this barrier to our advantage and show that approximate reconstruction (within a satisfactory degree of approximation) allows us to break the information theoretic lower bound of Ω~(d2log⁥n)\tilde{\Omega}(d^2 \log n) that is known for exact reconstruction of dd-sparse vectors of length nn via non-adaptive measurements, by a multiplicative factor Ω~(d)\tilde{\Omega}(d). Specifically, we give simple randomized constructions of non-adaptive measurement schemes, with m=O(dlog⁥n)m=O(d \log n) measurements, that allow efficient reconstruction of dd-sparse vectors up to O(d)O(d) false positives even in the presence of Ύm\delta m false positives and O(m/d)O(m/d) false negatives within the measurement outcomes, for any constant Ύ<1\delta < 1. We show that, information theoretically, none of these parameters can be substantially improved without dramatically affecting the others. Furthermore, we obtain several explicit constructions, in particular one matching the randomized trade-off but using m=O(d1+o(1)log⁥n)m = O(d^{1+o(1)} \log n) measurements. We also obtain explicit constructions that allow fast reconstruction in time \poly(m), which would be sublinear in nn for sufficiently sparse vectors. The main tool used in our construction is the list-decoding view of randomness condensers and extractors.Comment: Full version. A preliminary summary of this work appears (under the same title) in proceedings of the 17th International Symposium on Fundamentals of Computation Theory (FCT 2009

    Evacuating Two Robots from a Disk: A Second Cut

    Full text link
    We present an improved algorithm for the problem of evacuating two robots from the unit disk via an unknown exit on the boundary. Robots start at the center of the disk, move at unit speed, and can only communicate locally. Our algorithm improves previous results by Brandt et al. [CIAC'17] by introducing a second detour through the interior of the disk. This allows for an improved evacuation time of 5.62345.6234. The best known lower bound of 5.2555.255 was shown by Czyzowicz et al. [CIAC'15].Comment: 19 pages, 5 figures. This is the full version of the paper with the same title accepted in the 26th International Colloquium on Structural Information and Communication Complexity (SIROCCO'19

    Byzantine Gathering in Networks

    Full text link
    This paper investigates an open problem introduced in [14]. Two or more mobile agents start from different nodes of a network and have to accomplish the task of gathering which consists in getting all together at the same node at the same time. An adversary chooses the initial nodes of the agents and assigns a different positive integer (called label) to each of them. Initially, each agent knows its label but does not know the labels of the other agents or their positions relative to its own. Agents move in synchronous rounds and can communicate with each other only when located at the same node. Up to f of the agents are Byzantine. A Byzantine agent can choose an arbitrary port when it moves, can convey arbitrary information to other agents and can change its label in every round, in particular by forging the label of another agent or by creating a completely new one. What is the minimum number M of good agents that guarantees deterministic gathering of all of them, with termination? We provide exact answers to this open problem by considering the case when the agents initially know the size of the network and the case when they do not. In the former case, we prove M=f+1 while in the latter, we prove M=f+2. More precisely, for networks of known size, we design a deterministic algorithm gathering all good agents in any network provided that the number of good agents is at least f+1. For networks of unknown size, we also design a deterministic algorithm ensuring the gathering of all good agents in any network but provided that the number of good agents is at least f+2. Both of our algorithms are optimal in terms of required number of good agents, as each of them perfectly matches the respective lower bound on M shown in [14], which is of f+1 when the size of the network is known and of f+2 when it is unknown

    A Lower Bound on List Size for List Decoding

    Full text link
    A q-ary error-correcting code C ⊆ {1, 2,..., q} n is said to be list decodable to radius ρ with list size L if every Hamming ball of radius ρ contains at most L codewords of C. We prove that in order for a q-ary code to be list-decodable up to radius (1 − 1/q)(1 − Δ)n, we must have L = ℩(1/Δ 2). Specifically, we prove that there exists a constant cq&gt; 0 and a function fq such that for small enough Δ&gt; 0, if C is list-decodable to radius (1 − 1/q)(1 − Δ)n with list size cq/Δ 2, then C has at most fq(Δ) codewords, independent of n. This result is asymptotically tight (treating q as a constant), since such codes with an exponential (in n) number of codewords are known for list size L = O(1/Δ 2). A result similar to ours is implicit in Blinovsky [Bli1] for the binary (q = 2) case. Our proof is simpler and works for all alphabet sizes, and provides more intuition for why the lower bound arises.
    • 

    corecore